

Головной научно-методический центр - Институт ядерной физики и технологий

Семинар «Измерения, анализ и оценка теплофизических характеристик свинца в жидком состоянии»

Теплопроводность сплавов свинца Pb-Na и Pb-Bi-Na при температурах 350 – 800 °C

Круглов Александр Борисович, к.ф.-м.н., доцент Харитонов Владимир Степанович, к.т.н., доцент Паредес Леонардо Пирес, аспирант

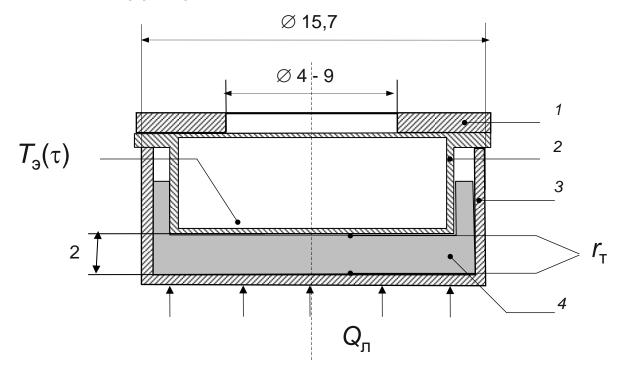
23 марта, 2023 г.

Введение

Работоспособность твэлов с нитридным топливом ограничивается термомеханическим взаимодействием топлива и оболочки. Один из путей решения этой проблемы заключается в использовании в конструкции твэла теплопроводящего жидкометаллического подслоя (ТЖМП) между топливом и оболочкой.

Перспективными для изготовления ТЖМП являются сплавы свинца с натрием и висмутом. Они обладают низкой вязкостью, хорошим смачиванием поверхностей стальных оболочек твэлов и нитридного топлива, пониженной температурой плавления, а также невысокой коррозионной активностью. Для обоснования применения данных сплавов в жидкометаллическом подслое твэлов необходимы, в том числе, достоверные данные по их теплофизическим свойствам.

Цель работы



Целью работ являлось исследование теплопроводности сплава эвтектики Pb-Bi с Na с содержанием Na 20 ат. %. (далее LBE-Na) и эвтектического сплава Pb-Na с содержанием Na 20 ат. % (далее Pb-Na) в актуальном для твэлов с ТЖМП диапазоне температур от 350 до 800 °C.

Экспериментальная установка и измерительная ячейка (ИЯ)

Измерения коэффициента теплопроводности сплавов свинца выполнялись на установке LFA 457 с использованием ИЯ из стали 12X18H10T. Донышко ИЯ нагревалось импульсом лазерного излучения $Q_{\rm n}$. Изменение во времени средней температуры поверхности крышки $T_{\rm 9}(\tau)$ регистрировалось с помощью инфракрасного датчика.

1 – диафрагма; 2, 3 – крышка и донышко ИЯ; 4 – расплав металла; $r_{\scriptscriptstyle T}$ – термическое сопротивление контактов расплава и поверхностей ИЯ

Подготовка образцов сплавов

Выплавка сплавов проводилась в НИЯУ «МИФИ» в перчаточном боксе в атмосфере аргона с контролируемым содержанием кислорода и влаги (менее 20 ppm) из свинца марки С1, висмута В00 и натрия марки «ч», очищенных от оксидных пленок. Массы компонент сплавов измерялись с точностью \pm 0,01 г. Фактическое содержание натрия в отливках составило 20 \pm 0,5 ат. %.

Отливка сплавов проводилась в кварцевую трубку с внутренним диаметром 14 мм, из которой было возможно извлечь слиток без разрушения трубки.

Методика проведения измерений

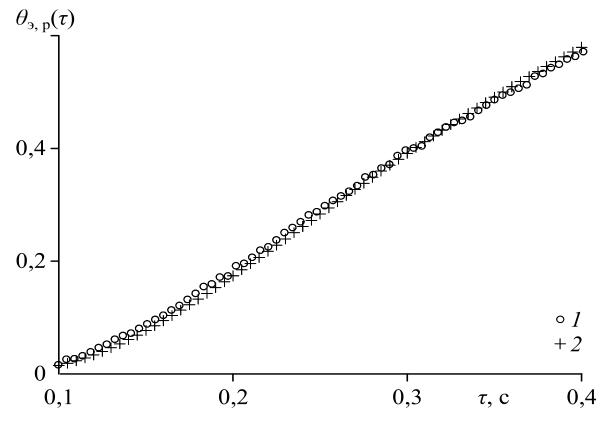
Эксперименты начинались с нагрева и кратковременной выдержки рабочего объема в форвакууме при температуре 400 °C. Затем в атмосфере аргона рабочий объем установки нагревался до 700 – 800 °С и выдерживался при этой температуре в течение 30-и минут. Во время выдержки выполнялся контроль уменьшения и стабилизации термических сопротивлений контактов поверхностью ячейки r_{τ} на уровне, существенно сплава меньшем термического сопротивления слоя сплава свинца в измерительной ячейке.

Методика проведения измерений

Измерения теплопроводности сплавов свинца в измерительной ячейке проводились с шагом в 50° С в интервале от 350 до 800 °С в режимах нагрева и охлаждения. Для проверки воспроизводимости результатов производилось не менее трех измерений при каждой температуре и оценивался разброс данных, который не превышал $\pm 2\%$.

Для последующего определения коэффициента теплопроводности свинца использовались термограммы экспериментов, в которых значения теплопроводности не изменялись в процессах охлаждения и нагрева.

Моделирование процесса теплопередачи в измерительной ячейке


Моделирование теплопередачи в измерительной ячейке проводились с помощью разработанной в среде FlexPDE численной модели теплопередачи для зависящей от времени энергии излучения лазера с постоянной в пределах донышка ячейки плотностью теплового потока.

Выполненный расчетный анализ показал, что на **начальном временном интервале нагрева 0,5**· $\tau_{0,5} \le \tau \le \tau_{0,5}$ ($\tau_{0,5}$ - время достижения половины подогрева) **термограмма процесса определяется в основном** $\lambda_{\mathbf{M}}$ **и** $\mathbf{r}_{\mathbf{T}}$, геометрией ячейки и слабо зависит от теплоотдачи от ее поверхности.

Определение коэффициента теплопроводности сплава

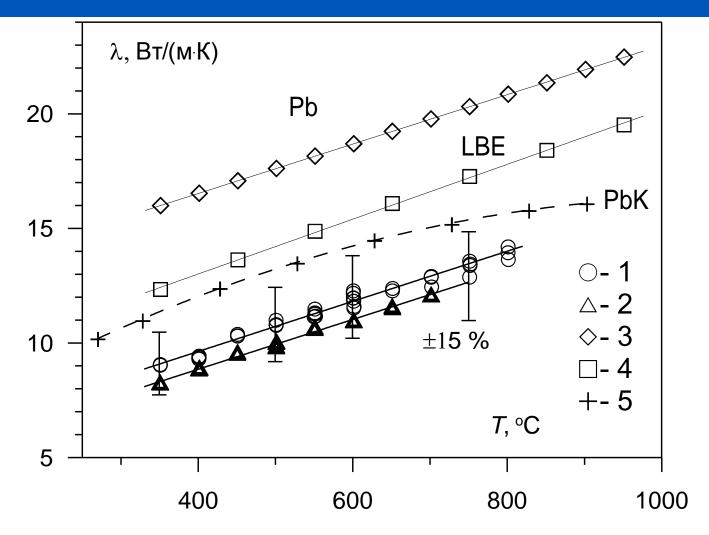
Теплопроводность сплавов $\lambda_{\rm M}$ определялась в результате минимизации среднеквадратичного отклонения нормированной расчетной термограммы $\theta_{\rm p}(\tau) = (T_{\rm p}(\tau) - T_{\rm p}(0))/\Delta T_{\rm pmax}$ от экспериментальной $\theta_{\rm p}(\tau)$ на начальном временном участке $0.1 \le \tau \le 0.4$ с

Экспериментальная (1) и расчетная (2) термограммы для сплава Pb-Na при T = 600 °C

Погрешность результатов измерений

Погрешность измерений теплопроводности расплавов металлов импульсным методом определяется погрешностями данных, используемых в расчетной модели теплового процесса в ячейке

$$\lambda_{\text{Pb}} = \Lambda(r_{\text{T}}, c_{\text{p}}, \rho_{\text{p}}, \lambda_{\text{cT}}, c_{\text{cT}}, \rho_{\text{cT}}, \Delta_{\text{p}}, \Delta_{\text{Kp}}, \Delta_{\text{д}}, \alpha).$$


Для жидкого свинца было получено, что погрешность измерений \mathcal{E}_{λ} не превышает 9 %.

В случае сплавов было необходимо учесть дополнительные погрешности, вносимые приближенностью расчетных оценок плотности $\Delta \rho/\rho = 4 \%$ и теплоемкости сплавов $\Delta c/c = 10 \%$.

В результате расчетов по модели было получено, что неопределенность результатов измерений теплопроводности исследованных сплавов ε_{λ} < 15 %.

Результаты измерений теплопроводности сплавов

Теплопроводность сплавов свинца: 1 – Pb-Na, 2 – LBE-Na, 3 – Pb, 4 – LBE (Кириллов, 2008), 5 – Pb-K (ИТ СО РАН,НГУ, 2020)

Теплопроводность сплавов Pb-Na и LBE-Na

Теплопроводность исследованных сплавов Pb-Na и LBE-Na заметно ниже, чем у Pb и LBE. Так при температуре 600 °C коэффициент теплопроводности сплава Pb-Na меньше по сравнению со свинцом почти на 40 %. Фактором, определяющим теплопроводность жидкого металла, является рассеяние электронов на неупорядоченной структуре жидкого металла, поэтому снижение теплопроводности сплавов может быть связано с формированием ближнего порядка в виде кластеров, в которых оказывается запертой значительная часть электронов проводимости.

Сплав	λ, Bτ/(м·K); <i>T</i> , °C
Pb-Na	$\lambda(T) = 0.011 \cdot T + 5.27$
LBE-Na	$\lambda(T)=0,011\cdot T+4,51$

Заключение

- Импульсным методом в диапазоне температур 350 800 °С получены новые экспериментальные данные по теплопроводности сплава эвтектики Pb-Bi с Na с содержанием Na 20 ат. % и эвтектического сплава Pb-Na с содержанием Na 20 ат. %.
- Анализ источников погрешности используемой методики показал, что неопределенность результатов измерения теплопроводности сплавов свинца не превосходит 15%.